
AD AObS 519 FLORIDA STATE UNIV TALLAHASSEE DEPT OP STATISTICS F/S 12/1
ASYMPTOTIC NORMAI.ITY Ap~ EFFICIENCIES OP TESTS BASED ON MODIF IE—ETC(U)
JAN 79 a S RAO, a SETHURAMAN DAAG29—76 e—0235

UNCLASSIFIED FSU—STATISTICS—M*89 ARO—13B68.15—MX

•



1.0 ~~~~
_ _ _ _  ~ ~: IIJII~2

( I I  ~~ Illll~
________ L8

1111(1.25 IIIII~ ~II~6:

MICROCOPY RESOLUTION TEST CI-I~~T
NATIONAL BUREAU 01 STM~DAROS-I963-~



ie Florida State Universit’
Ri71iiPil



-
~

-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.. -
~ — .-~--

-

)
j SYMPTOTIC~~ORMALITY AND EFFICIENCIES OF TESTS]

- 

~~r 
-

~~~

by

J. S./~ao University of California , Santa Barbara

and

J. Sethuraman Florida State University , Tallahassee

FSU Technical Report No. M489~
USARO-D Technical Report No. 30 ~

‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~The Florida State University
• 0 Department of Statistics

Tallahassee, Florida 32306

•~~~~ 

— -:~~ r,rrrr~~ ’4”~~~~~~’ 
—-.“ .•—t•00.- --.. - ~~~~~~~~~~~ -•... ~~~~~~~~~~~~~~~~~~~ - -~

~~~~~ 
I 

.r ~~~,..i ~~~M4’19~ ~~v~-~~~/
-~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~

‘Research 1.1 b,
__
~1ip —1.~ited States Army Research Office under

Grant No. DAAG29-76-(j~238 f The United States Government is authorized
to reproduce ~~~~~ rtU~~ ipàii~.L,.~ii..ts_i*~ ‘.‘v imental purposes.

_ _ _ _ _ _  . . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ _ _ _ _ _ _ _ _ _  
-

~~~~~~~ D D C
iN ~~~ $ICIIN~~~~~ 

•
~ 

I u L~~~~~. Jt - - _ _ _ _ _ _ _  

-

I U) iaio 9 19t9
~~~~~~~~~~~~~~ 

DI~~~~~~~ION STA~ ~~~~~~~- ~ L~U U
~~~~~~~~~~ 

Approved for pub~ -
. D

______ Distribution Ur !:
~~~~~~~~~~~~~~~~~~~~ ‘~9 U~
~‘. ‘i L  -• • 0  

_ _ _ _ _ _ _ _

.. a._. _
~ 

.•-•—.-————
~~~~~~~~~~~~

. 
~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ‘ 

-

L ~~~ _ _ _ _ _ _  _ _ _ _ _ _ _ _  
_ _ _ _  —.



~~0~~0~~ 
0 —.---- - - -~~~~~~~~~~ - - 0 -  -~~

—-~~~~~
00~~ 4

- 
0 ASYMPTOTIC NO~ 4A.LITY A1~ EWIC~~NCIES

OF TESTS BASE!) ON MODTh’~~D SPACINGS
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E l
ABSTRACT:

Tests based on adjusted or modified spacings are proposed for test ing

0 goodness of fit problems. The weak convergence of the empirical distribution

funct ion of such modified spacings is atndied using some earlier results of

the authors. The asymptotic theoi7 under close alternative sequences is also

0 given thus enabling one to calculate the asymptotic relative efficiencies

of such tests.
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ASYMPT OTIC N0I~4&LITY AND EFTICIENCIES OF TESTS BASED ~~ MODIFI ED SPAC~~~S

• J.S. Bao, University of Californi a, Santa Barbara

J. Sethuraman, Florida State University, Tallahassee.

1. Introduction and Si ary.

Let ~~~~~~~~~~~~ be (n-l) independently arid identically dis-

tributed random variables with a conmion distribution function (d.f. )

G(x). The goodness-of-fi t problem is to test whether G(x) is a

specified d.f. . When the latter d.;f. is continuous, a simple prob-

ability transformation on the random variables would permit us to

equate the pre-assigned d.f. to the uniform d.f. on (0,1]. Therefore,

from now on we assume that this reduction has been effected and that

wider the hypothesis, G(x) is the uniform d.f. on [0,1].

Let � ... ‘ be the order statistics. The sample

spacings (D1,...,D~) are defined by

D~~= X ~~-X ~_1, i = l ,...,n

where we put X~ = 0, X~ = 1. In order that this definition of the

sample spacings be meaningful under any alternative, the d.f. G(x)

must have the carrier (0,1]. (The carrier of a d.f. is the smallest

closed set with probability one.)

Under the nu].]. hypothesis, E(D~) 1/n for all i. We will there-

fore call (nD~, i — 1,. . . ,n) as ‘nornialised’ spacings. Further if

be some positive numbers, then we shall call (nD~/h~1, i= l ,....,n)

as ‘modified ’ or ‘adjusted’ spacings . For example, one way of adjusting

, :tl
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the spacings is to divide them by their expectations under some arbitrary

d. f. . The rationale behind dealing with the modified spacings is that

in some cases one may choose to adjust the spacings by their expectations

under some alternative distribution to increase the efficiency or other-

wise, to enlarge the class of statistics based or spacings . This may be

thought of as being analogous to the use of Normal scores and other score s

in rank tests (see Section 6 for details). Tests based on spacings have

been proposed for the goodness-of-fit problem by several authors . See

e.g. , Greenwood (l9~6), Kimba ll (1950), Sherman (1950) and Daxiing (1953).

Distri bution theory of such stat istics and their asymptotic efficiencies

have been stndied by Sethuraman and Rao (1970) and Rao and Sethuraman

(1975). Since these two paper s are closely related to the present work

and are referred often , we will refer to them as SR and RS respectivel y.

The present paper is devoted to the study of asymptotic d.istributiona

and asymptotic relative efficiencies (ARE’ a) of tests based on modified

spacings. As pointed out in SR , for calculating Pitnian efficiencies , it is

enough to obtain the limiting distribution under a sequence of alter-

natives which converge to the 1~ypothesi s. This problem turns out to be

somewhat simpler as can be seen from the cases treated by Cibisov (i96i)

and Weiss (1965). Se also RS and SR. We, therefore , choose the following

sequence of alternatives

G(x) = x + L(x)/n3, 0 ~ x <1

where ~ is a number ~ 1/li and L(x) is twice continuously different -

iable on (0 ,1]. These conditio ns imply our earlier requirement that

the carrier of G(x) be (0 ,1]. We shall say that this alternative is

at a distance of order n~~ from the hypothesis .
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As in RS we obtain the limiting distributions of the empirical dis-

tribution functions of the adjusted or modified spacings in the sense

of weak convergence of measures in D(0, c~] the space of functions on

[0, ~~
] with no discontinuities of the second kind. This is done through

some interesting results of independent interest concerning the empirical

distribution fun ctions of perturbed random variables and randomly scaled

random variables which are given In Sections 3 and li. Appealing to the

invariance principle , we ininediatel,y have the limiting distributions of a

large class of statistics which are symmetric in the modified spacings.

As shown in RS and ZR , tests which are symmetri c in the normalised

spacings have limiting power greater than the test size only if ~ =

i.e. , they cannot discri minate alternative s which are at a distanc e of

order n~~ from the hypothesis , for’ any > ifI~.. It is also shown there

that among the many such standard test s due to Greenwood (i9I~6), Kinibal].

(1950), Sherman (1950) and Darling (1953), the one by Greenwood based on

~~ (nD~)
2
/n has the maximum ARE. We note another interesting feature

of the symmetric spacings tests, namely their ARE’ s do not depend on the

particular choice of the alternative sequence i.e., L(x).

These features are not shared by tests symmetric in the modified

spacings, which are discussed in Section 6. Here the efficiencies depend

on the alternative sequence as may be seen from the expressions (6.5)

and (6.6). Also these tests based on modified spacings can in general,

distinguish alternatives at the more standard distance of n 
- 

~~~~, though

there may be exceptions as shown by an example (see Section 6 for details).

The reader not interested in the detailed derivations may skip

Sections 2 , 3 and 1~ and go over to Sections 5 and 6 where the efficiency

comparisons have been made.
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2. Preliminaries

Let ~~~~~~~~~~~~ be (n-l) independently and Identically dis-

tributed random variables with a continuous d. f. Gn
(x)

~ 
whose carrier

is (0 ,1], fl 2,3,... • Xq~ • • *~ X~_1 may also depend on n, but we

shall suppress this in our notations throughout. G~(x) is a sequence

of alternative distributions , which converges to the uniform distribution

on (0,11, the distribution specified by the hypothesis.

Assumption (A):

We assume G (x) to be of the form

(2.1) Gn(X) = x +

for x E (0 ,1] where ~ is a fixed constant 1/li . We impose the

following regularity condition on • L(x). L(x) is twice continuously

differentiable on (0,1]. If L (x) and £ ‘(x) denote the first and

second derivatives respectively of L(x) , then we note that there is a

constant ~~ such that

1. (2.2) L(x) I � L~, I.L (x) I � L~, IL ’(x) I ~ L~

- 

- for all x E (0,11.

The inverse function of Gn(X) is denoted by G (p), 0 ‘ p ~ 1.

We define

• (2.3) kn (P) = ç~[G~~(p)] = [dç’(p)/dpr’.

It may be verified that in our case

(2.1~) G~~(p) = p-L(p)/n~ + o(1/n~)

(2.5) k~(p) = 1+L(p)/n~ - L(p~t ‘(p)/n
2
~ +o(l/n~~~~)

where o(’) is uniform in p and ~ = max(0, 4-

- 
--

~~~
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We will obtain several limit distributions under the sequence of

- : alternatives G (x) satisfying assumption (A). It is clear, however,

that the limit distributions under the hypothesis are obtained by putting

L(x) 0. We will make sane further remarks about these alternatives in

Section 6. let the random variables (r.v.’s) ~~~~~~~~~ be arranged

in increasing order of magnitude thus

(2.6)

The sample spacings have been defined In Section 1 as

(2.7) D1 =X ~~— X ~~1, i= l ,...,n

where we put X~~= 0, X~~=l.

We first relate these sample spacings D1 to the spacings based on

uniformly distributed r.v. ‘a on (0,11 (to be called uniform sample

spacings). tat U1,...,U~ 1 be (n-i) independently and identically

distributed r.v.’s with a uniform distribution on [0,1]. These are

arranged in increasing order of magnitude thus

The uniform sample spacings are defined by

(2.8) = — U~_1, i =

where again we put U~ = 0, U~ = 1.

For two r.v. ‘a X and Y, we write X Y to mean that X and Y

are distributionally equivalent , that is, the distributions of X and Y

are identical. We know that

(Xi, i — 0,...,n) (G~~(TJ~), i —

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

~~~~~~~~~~~~~ •.j
~~ ~~~~~ ~~~~~~

- — —
~~~~
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and thus

(Di, i = l,..., n) (ç1(up - G~~(TJ ~_1) ,  i =

= (;/k~(i~ ), i = 1,. .. ,n)

where

(2.9) = (Ti/o~~ , i —

where

(2.10) = 1 + 8~~/n~ + y~~/n
2
~ +

with

(2.11) = LC1~ )

(2.12 )

and

(2.13 ) supJ ~ I R ~~I -. 0 almost everywhere
i

L 

in view of (2.5). Also, fran the existence of the limiting distribut ion of

the Ko]mogorov-Smirflov statist ic ,

(2.].li.) supJ~~IU~-i/ nI = o ~(i).

Thus from the continui ty of L, £ and £‘,

(2.15) sip n~ IB~~-B(i/n) l = o~(i)

(2.16) sup I~’ - ‘y (i/n)I = o (l)
i ni p

• 
~
‘ 

where

.

~~~~ 
_

—i 
_ _ _ _ _  

_ _ _ _ _ _
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(2.18) ‘i(P) = —L(p )L ’(p), 0 ~ ~ 1.

Now, let W1~•~ ,W~ be n independently and identi cally distributed

exponential r.v. ‘5 with density function e~~ , v ~ 0. let W = (w1+ . . .  + Wn)

and let = W / n. Then it is weu known that

(Ti, i. = l, . . . ,n) (w1/w , i =

Thus (2.9) may be rewritten as

(2.19) (Di, I. = l,. . . ,n) (Wj/c~~~ W , I. =

where

• 
(2.20 ) ~~~ i = l,..., n) ‘

~~ 
(o~~, I =

In view of (2 .20), we save on notation by writing cr~~ for and

retain its structure defined in (2.10 ) and will later on uti lise the prop-

erties (2.13), (2.15 ) and (2.16).

The empirical d.f., H~(x) of the nor malised spacings is defined as

follows

H~(x) = ~~ I(nD~, x)/n , x ~ 0

- 1]. if z~~~x
(2.22) I(z; x) =~~~ .

• ~~0 if z > x

Using the equivalence (2.19), we note that

(H~(x), x ~ 0) C ~ I(W1/~~~~~~; x)/n , x ~ ol

(2.23) = (F (x~~ ), x ~

~~~~~~~~~~~~~~~~~~~~~~~
- -  I- - - ____ 

- - 
- - -~
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where -

(2.2k) - F (x) = ~~I(wj/~~ ; x)/n.
1

• Relat ion (2.23 ) says that the distributions of the stochastic processes (Hn(X)~ 
x ~

and ( ~ I(w1/cs~~~~;x)/n, x ~ ol in D[0, c~ ] coincide and this distribution-

a]. equivalence is si.. -inger than the distributional equivalence of the finite
- dimensional marginals. We refer to F (x) as the empirical d. I. of

• 
W1~• ~~ with - random perturbations and a random scale factor

If (hul, ~~~~~~~~~~~ n = 1,2,... be a triangular array of positive

constants, define

• ( 2 .2 5)  • D 1~ = UDi/hni~ I = l,...,n.

We shall call (D~,...,D )  modified qpacings modified by h~~,... ~hnu and the

empirical d.f’. of these modified spacings is defined by H~(x) where

n

— (2 .26) H (x) = ~~I(D~; x)/n.
- 

1

-
~ From (2.19), it follows that

-
~ (2.27) (H (x), x ~ 0) (F (xW ~), x ~ o)

where the cj~~’s used in the definition (2.211 ) of F (x) here are distribution-
- ally equivalent as follows:

(2.28) 
~~~ 

i = l ,...,n3
~~
(hni(l+ /n~+~~~1/n

2
~ +R~~), I= 1 ,...,n)

where $~ , y~~ and satisfy the conditions laid dawn in (2.15), (2.16)

and (2.13). As in the remark after (2.20), we replace the symbol ‘
~~~~“ in

(2.28) by ‘ = ‘ in order to avoid introducing new notations.

1-
~ 

_ _  
_ _ _ _ _ _ _ _~~~~ ~~~~~~ 
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3. Asymptotic distribution of the empirical d.f. of random variables

subject to perturbations.

tat Z.L,Z2,... be independently and identically distributed r.v. ~

with a conmton d.f. F(x) with F(o) = 0. We assume that F(x) is thrice

differentiable. Let f(x), f’(x) and f”(x) denote the first , second

and thL. d derivatives respectively of F(x’. We impose the following blanket

condition (B) on F(x).

Assumption (B):

• xf(x), x
2f ’(x) and x3t~(x) are bounded on ~~~

Let I = 1,...,fl : n = 1,2,...,) be a triangular array of

constants. Then the random variables

z~ = z1/~~~ ,- i. = 1,... ,n

are said to be perturbed random variables, n = 1,2,... . let

n

(3.1) F~~(x) = ~
‘ i(z 1; x)/n

— - = ~~ I(Z j/o~il
; x)/n .

We refer to Ful(x) as the empirical d. f. of (7~,... , z~) under a

perturbation by the non-random quantities (a
~il, 

I =

The following structure is assumed of t
~nj1’ 

i = 1,... ,n). There

exist continuous functions 8 (p) and y(p) on [0,1] such that

(3.2) 
~~il 

= 1 + $ (i/n )/n~ + ~(i/n)/n
2
~ +

where ~ is a constant ~ 1/14 and -

(3.3) sup Tn Ru 1 -, 0 as n -‘
1.

~ A



— 
-

~~~~~~~~~~~~~~~~~~~~~~
-- 

~~~~~~~~~~~~~~~~~~~~~~ ~~~
— -

~~~
-
~~~~~~~~~ 

- --- -
~~~~~

10

If ~ > 1/2 , then the second and third terms on the right band aide (RHS)

: of (3.2) can be absorbed into Rni and if 1/li. <~~~~~‘ 3, then the third

term of the BHS can be absorbed into Rni. We note that ~ 1 uniform-

ly in i, so that without loss of generality we may assume

(3.11) 1/2 
~ ~ 2

f’or a].]. n and i. let

F~~(x) = E(Fml(x))

= E( 
~ 

I(zi/~ui; x)/n)

(3 . 5 ) .  =

and

(3.6) ri 1g (x)  =f  (Fui
(x)_P

~~(x)), 
X �  0.

It Is easy to see that F~~(x) tends to F(x) uniformly in x.

t 
- Remark 1: When condition (B) holds, we can replace ?~~(x) which

t 
enters the definition of rI ul(x) in (3.6) by

F(x) if ~>]J2
1

F(x) + xf(x) J 8(p)dp/n~ it i/ 1~ <~~ ~ 2J2

• (
~~

) F
~~L

(x) = 1F(x) + xf (x ) J’ B(p)dp /n

+ [xr(x)J ~~y(p) d p +x2f s(x)t1a2 (p)dp/2]n3 if ~~ —

after omitting terms which are of smaller order than ~~l,”2 
~~~form~’ in x.

The most general conditions under which F~~(x) can be replaced as above

must depend on ~~. However since we are contemplating only the application

with F(x) = 1 - exp(-x) in Section 6, we will. content ourselves by

- 
- imposing the blanket condition (B).

_ _  -
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The following theorem which establishes the weak convergence of Ci~~ (x), x ~ o) is

taken from RS , where the weak convergence on the space D(0, a’] is also

briefly explained

Theorem 3.1 (RS) : Let condition (B) hold. The sequence (llul(z), x ~ o)

considered as a stochastic process in D(0 , a’] converges weakly to a Gaussian

process (m~(x), x ~ o) with mean zero and covariance function

(3.8) K1(x,y) = K1(y,x) = F(x)(l- F(y)) for x � y.

To allow for perturbations by constants which are more general than given

in (3.2), we consider a triangular sequence 
~%i

2, ~ = 1,...,n), n = 1,2,...

with the following structure

(3 9) %i2 = e(i/n)(1+B(i/n)/n~ + y (i/n)/n
2
~

+R
~~
]

where ~(p) and Y(p) are continuous functions on [0,1] and

satisfies (3.3). We put the following condition (C) on e(p).

Assumption (C): 
-

e(p) - is continuous on [0,11 except at a finite number of points and, -

f for each x, the integrals of F(xe(p)), e(p)f(xe(p)) and e2(p)f ’(xe (p))

as functions of p on (0,1) exist and are finite.

We shall see later that this generalisation gives results which enable

us to obtain the limiting distributions of statistics based on modified

spacings. Define the empirical d.f. F~~(x) of the Z’s perturbed by the

~%i2~ 
given in (3.9) , by a formula similar to (3.1). let F~~(x) and

%2(x) be as defined in (3.5) and (3.6), with the perturbati on constants

instead of (c
~ il). The following theorem is proved exactly as

• 

- 

Theorem 3.1 and is stated without proof.

~~~~~: W~~~~~~~~~~~~~~~~- ~~~~~~~~~~~ 
~~~~ 4
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Theorem 3.2: Let assumptions (B) and (c) hold . The sequence of

stochastic processes (,~~(x) , x ~ 0) in D[0,w] converges to the

Gaussian stochastic process 
~~~ 

(x), x ~ 0) with mean zero and covariance

function 1c2 (x ,y) defined by

1 -

(3.10) x2(x,y) = K2 (y,x) = ~ 
F(xe (p)) [1- F(ye (p)) ]dp for x ~ y.

o 0

Remark 2: Under conditions (B) and (c) , F~~(x), which is defined

by (3.5) through the constants [cy~12
) of (3.9) can be replaced by

$ F(xe(p))dp jf ~~~> 1/2
0

1 1
$ F(xe (p))dp + .r ,ca (p)e (p)f(x8 (p))dp/n~ if <~~~

• 
F~~ (x) = 

-

f F(xe (p))dp + $ x8(p)e (p)f(x8 (p))dp/n1 -

(3.ll) 0 0

+ [
~~x~(p)e(p)f(xe (p))dp+f

l
x2B2 (p)e2 (p)f l( xe (p))dp/2]/ ~]./2

if ~~= l/14

~. up to terms of smaller order than ~~~,i’2 uniformly in x.

We now proceed to establish a ]imit theorem for the empiri cal d.f. of

rand omly perturbed r.v. ’s . let (cç~1, I = 1,. . . , n) n =1,2, . ..  be a

triangular scheme of random variables with the form

* * * 2~ *
ann. 

= 1 + Bni/n + yni/n 
+

where

(3.13) supA/i~ IR~~I = ~~ (1)
i 

p

and there are continuous functions B (p) and ~ (p) on (0,1] such that



- 
—

~~~
- __~rti

_—~. 
— 

~~~~~~~~~~ 

-

~

sup ~~~ -B(i/n) I = o (1)
i p

(3.114)
*sup ni~~~~~~~1) I = o (1)

i p

where

I ~~~~~~~~ if
(3.15)

1 0  if 
-

I
Let

n

F~~(x) = ~ , I(Zj/a il
; x)/n. -

This is the empirical d. f. of Z1,... ,Z2~ perturbed by the random quantities

i = l,...,n) . Let the non-random quantities 1
~nil1 be defined as

(3.17) c~ il = 1 + B(i/n)/n~ + y(i/n )/n
2
~ + Rni

in terms of the new B (p) and y(p) and F~~(x) be defined by the

relation (-3.5) with the new on 1’s. We have the following result from RB

on the process

(3.18) {t~~~(x) = ~/T(F~~(x) - F~~(x)), x ~ o}.

Theor em 3.3 (RS) : Let condition (B) hold. The sequence of processes

• (y~~ (x), x ~ 0) in D(0, a ’]  converges weakly to the Gaussian process

x ~ 0) with mean zero and covariance function given by (3.8).

Now suppose that (a~~2, i = 1,...,n), n = 1,2.. .  is a triangular

scheme of r .v.’ a ‘with the form

I

- 
•• -
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(3. 19) on~~2 = e~~[l+8 j/n~+ ~q~~/n2
~~+ R 1]

where R~~, B~~ and y~~ satisfy the assumptions (3.13) and (3.114)

and further there is a function 8(p) on (0,1] such that

(3.20) sup ,f Ie~~- e(i/n) I = o (1)
I p.

and 8(p ) satis fies condition (c). Now define F 2 (x), F~~(x) and

si~n11~ r to the expressions in (3.16),(3.5) and (3.18), resp ectively with

(on~~2 ) instead of [on
~il). The following theorem then follows fran Theorem 3.2

in exactly the same way as Theorem 3.3 follows from Theorem 3.1.

• Theorem 3.11: Let assumptions (B) and (c) hold. The sequence of

stochastic processes (,~~ (x), x ~ 0) converges weakly to the Gaussian

process f12(x), x ~ 0) in D(O,a’] where (~~2(x), x ~ 0) has mean zero

and covariance function 1c2(x,y) given in (3.10).

A note of clarification regarding the notation may be in order. There

are four different set s of perturbat ion constant s in all, namely : (onflil ) - of

Theorem 3.1 satis fying cond itions (3.2) and (3.3); Canj2} of Theorem 3.2

satis fying (3.3) aM (3.9); [c~ il3 of Theorem 3.3 satisfying (3.12)-(3.1J1);

and finally (on~123 of Theorem 3.14 satisfying (3.13), (3.114), (3.19) and

(3.20) . It may be noted that a subscrip t 2 is attached to denote perturbabion

constants with modifying term B (i/n) in them 
- 
as opposed to the use of

subscript 1 where such a term is absent . Similarly the reMan perturbation

constant s, as well as any quant it ies like empirical distribut ion funct ions

based on those , are starred (as opposed to the analogous unstarred versio n based

on non- random perturbations). Thus TL~ (x) is the process based on the

non- random [CXn12) which have the mod ifying term B ( i/n) in them while

1~~1(x) is based on the random without the a ( I/n) term in them.

The four theorem s of the next sect ion also corre spond to these four cases. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •-~~~~~-~~ 

-

- -
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11. My~~totic distribution of the empirical d.f. when the random
variables are subject to perturbations and a random scale factor.

We retain the notations of the earlier sections. Let 
~1ul

(x) be

defined as in (3.6) through Ful(x) and P~~(x) which are in turn defined

- as in (3.1) and (3.5) and the onnil s have the structure (3.2).

let Z be a r • v. and let = Am (z - 1). .We now make the following

assumption (D) on the Stochastic process (,~~1(x) , x ~ o) and

Assumption (D):

For any finite collection 
~~~~~~~~~~ 

the distribution of

Cr~ul
(x
~J), %1

(x2),..., ‘1n].~~k~’ ~n
3 converges weakl.y to the distribution

- 
• of (T1 j(x

l),...,~~l
(xk), ~), which is zaultivariate normal with zero means

and covariances given by

(14.1) - cov(1~1(x1), r~~(x 3
)) = K1(x1, Xj )~ 1 ‘ i~ i ‘ k

where X1
(x,y) is as defined in (3.8) and

(14.2) cov(rIj(xi), 
~

) = a1(x~), I =

and 
- 

-

(li .3) var(~) = 1.

We add the following to the assumption (B) made on 7(x) in Section 3.

*Assimrption (B 1:

There is an a > 0 such that Xon (l_p (X)) 4 0 and xf(x) 4 0 as

x ~ a’. Again from RS we have

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
- 4
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Theorem Ii.1 (RS): Let the assumptions (B), (B*). and (D) hold. Let

(14.14) Cul(X) = ~/ (Ful(xZ ) - F~~(x)).

Then

(li .5) sup Ic~~.(x) - 1~~ (x )_ ç ~xt (x )~ = 0 (1).

Thus (Cni(x), x ~ o) converges weakly to the Gaussian proces s

1C1(x) = ,.~1(x) + xf(x) ~, x ~ o) in 13(0, a’] which has mean

zero and covariance function

(14.6) 1C3(x ,y) = K~(y,x)

- 
= K~(x,y) + xyt(x)f(y) + ,cf(x)a1(y) + yf(y)a1(x) .

We now extend this result to the more general non-random perturbation

factors I a~~~) defined in (3.8). let F~~(x), F~~(x) and ~~ 2 (x) be

as defined and used in Theorem 3.2. If Z~ be a r .v. , we assume that

= 
~~ (Z:

_ l) satisfies the following assumption (13*) with the process

x ~ o).

*Ass~m~ tion (DJ :

- For any finite collection (x. 1,.. . ,x~), the distribution of

converges weak]y to tbat of ~~~~~~~~~~~~~~~~~~~
which is a mu .ltivariate normal distribution with zero means and cova.riances

given by

(14.7) cov(i2 (x~), ~ 2 (x
3

)) = K2(x~, x3), 1 ~ I, j ~ k

where 1C2(x,y) is as defined in (3.10) and

— —•—•—•-—-— .—••-•--—-—— --•---- - - - - 4-: -

~~~~~~
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(11.8) cov(t, 2 (xi ) 

~
) a2(x~), i l,...,k 

-

and
- 

var (~ ) = 1.

Then we have the following theorem whose proof follows on the lines of

the proof of Theorem li..1 and is omitted.

Theorem k.2: Let conditions (B), (B*), (C) and (D*) hold. let

* +(11.9) c~~
(x) =J•~i(F~~(xz ) - P~~(x)].

Then

1
(14.10) sup I c  (x) - Y~~2 (x) - ~ x( ! e(p)r(~~ (p))dp) 1 = o (1).

O � x �CQ n2 o p

Thus t~~~(x), x ~ C) converges weakly in D(0, a’) to the Gaussian
1

process (c2 (x ) = ,12 (x) + ~ x(J~ a (p)f(xe (p))dp), x ~ o) which has mean

zero and covariance f unction

j 1ç1 (x,y) = Ic,4 (y,x)
~~- 1 1

= K2 (x,y) + xy(~ e (p)f(~~(p))dp)(~ e(p)f(yO (p))dp)
0 0 -

1 1
(11.li ) ÷ xa2 (y ) (J~ e(p)f(xe (p))dp) + 7a2(x)(i;) e( p)f(ye (p))dp)

with K 2(x,y) as in (3.10).

Now’ coming to the case of random perturbation factors, let [on~~~) be

as in (3.12 ) and P~~(x), F~~(x) and i~~~ x) be as defined and used in

Theorem 3.3 . Let (onflil), the non-random constants generated fran (aj1)

be as in (3.17). let z~ ~n 
- 

be as used in Theorem li.l and satisfy the

condition (D) with the process (~~~~(x), x � 0). Then we have the following

extension of Theorem 14.1 to the case of random perturbations from RS.

- - - -— - - ---- ~~ _~ _ i _ _
~~_ ~~~-
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Theorem 4.3 (RS) : Let the conditions (B), (B*) and (D) hold. let

Cni(x) = ,J~ (F~~(xz*) - F~~(x)J

then

(14.13) sup ( C ul(x) - t~ .,~(x) - ~~xf(x)l = o (1). I0� x~~c~ p

Thus (c~ .(x) , x ~ 0) converges weakly to the Gau~sian process

(C1(x) = ,~1(x) + P~xf(x), x ~ o) defined in Theorem 11.1.

Finally let (on~~2 ) be the more general random perturbation factors
defined in (3.19) and satisfy the conditions stipulated there. let
the non-random constants ‘generated’ by f a~ 2) be as defined in (3.9).
Let 7 2(x), F~~(x) and ,~~2 (x) be as defined and used in Theorem 3.14..
Let ~~ be as used in Theorem 4.2 and satisfy the condition (D*) with
the process (i’~~~(x), x � 0). Then the following theorem can be deduced
from Theorem 14.2 in the usual way.

Theorem 4.li: Let the conditions (B), (B*), (C) and (D*) bold. let

(14.114) c~~(x) = ~~~(p*
2 (xZ*) - P~~(x)].

Then

* 
1 

-(14.15) sup IC~ (x) - ~ fl2 (x) 
~n~~1o 8(p) f(X8 (p )) d p) J = o (1).0 � x �a ’ p

Thus the process (c~2(x), x ~ o) converges weakly in 13(0, a’] to the
Gaussian process (C2(x), x ~ ol defined in Theorem 14.2 with mean zero
and covariance function given by (14.11).

____ 
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5. Asymptotic distributions of the empirical d.f. ’ s of nornialised and
modified s~pacings and teats based on them.

In this section,- we relate the results of the last two sections to

the spacings statistics. First we give the asymptotic distributions of

the empirical d.f.’s of the normalised spacings H~(x) and of the modified

• spacings H (x), defined in (2.21) and (2.26) respectIvely using the dis-

tributi onal equivalences (2.23) and (2.27). We then establish the asympto-

tic normality of some classes of test statistics based on these spacings.

We shall first consider the empirical d.f. of the normalised spacings

H~(x), which from (2.23) is di~tributiona1ly equivalent to

- 
- The r. v. ‘5 W1,W2 , . . .  have the exponential d. f. -

(5.1) - F(x) = 1- - e~~C, x ~ 0

which satisfies all the regularity conditions of Theorem 14.1 and the as-

sumptions (B) and (B*). Further the C c~~1) used in the definition of

F~~(x) satisfy the conditions (3.12), (3.13 ) and (3.114) with 8(p) and

v(p) given by (2.17) and (2.18). Hence we have -

1 1
(5.2) J’ 8(p)dp = 

~~ 
L ( p ) d p  = 0

0 0

1 1 1 1
= - L(p)L’(p)dp = .f £2(p)dp = J’ 82 (p)dp.

let

* +(5.3) c (x) = ,,i; (Hn(X) - Pal(x)]
ni

~f 
(F~~(x~~) -

where

_

~

- -

~

TI _ _ _
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(l-e ~~) for ~4> l/1l.

(5.11) F~~(x)

( l - e~~ ) + (?L
2 (p dp)e

_
~

c (x _ x 2/2)/~f~ for ~=l/1i

ignoring terms which are of smaller order than ~~~/2 
~~~f~rmly in x.

Further since the random scale factor here is ~~~ assumption (D) is sat-

isfied and a1(x), defined in (11.2) is easily seen to be (-xe~~) In view

of these remarks we have the following theorem as a consequence of Theorem

14.3 as in RS.

Theorem 5.1 (RS) :  The sequence of stochastic processes (~~~ (x), x � 0)

converges weakly to a Gaussian process (C1(x), x > 0) - with mean zero and

covariance function - -

(5.5) K3(x ,y) = e~~(i- e~~.zye~ 5, x ~ y.

The invaviance principle may be invoked to obtain the limit distributions of

various functionals of Cni (x) and their ARE’s computed, as was done in SR.

Consider now the modified spacings

(5.6) =

where hni satis fy

(5.7) sup
~f~~Ih i

_ h(i/n)I = o(l)n

where h(p) is a function on (0,1) having at most a finite number of

~L 
~~

- * * *discontinuities. Then the empirical d.f. (n~(x), x ~ o) of

•#~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
- 

•~~~~~~~ ~~~ ~~~ ~~~~~~~~~~~~~ ~~
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defined in (2.26) is distributiona.U.y equivalent to (P~~ (x W ) ,  x ~ 0)

where 7~~(x) is the empirical d.f. of the exponentially distributed r .v. ’s

Wl~• • • ~ Wn perturbed by the random factor s (i~r~~2, i = l,...,n) which have

the structure defined in (3.19), i.e.,

* * * * 2~ *
Q!ni2 e~~ (i + B ~~/n + y~~/n + Rni )

where 8~~, B~~, ~~~ and R~~ satisfy (3.20), (3.111), and (3.13)

respectively with

e (p) = h(p)

(5 .8)  8 ( p )  =

- .y(p) = -L(p)L’(p), 0 � p � 1.

let

(5•9) c~ (x) = ~/i~f H (x) - F~~(x)]

where

F~~(x) =~~~ ( l_ e ~~~’~~~)dp if ?j > l/2

= J’(i- e~~~~~~ )dp + 
(r

’xe~~~~~L P h P d P ) / n~

(5. io) if 1/11 <~~ ~ 1/2

r ~

-
- = .f (i - e~~~~~’~)dp + (r xe (

~
) L(p)h(p)dp)/n~~~

+ f [-xL(p)L ’(p)h(p)e~~~~~~ - x2h2 (p )L2 (p)e~~~~~~/2]dp/n~

if ~ = i/14

to terms of order n~ 
1/2 As an imsediate consequence of Theorem 14.14,

j since a2 (x) defined in ( 14.8)  is (_x ~~b(p)e
_
~~~1~ dp’), we have the followiz~

0

c

L ~~~~~~ V~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~ “ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Theorem 5.14: The sequence of stocha stic processes (c~~ (x), x ~ 0)

in D(0, a’] converges weakly to the Gaussian process (c2 (x) , x ~ o) with

mean zero and covarianc e function

(5.11) 1c14(x,y) = Iç~(y,x) _ f e _1
~1 o ) ( l_ e th(

~~ )dp

- ~~r ( ! h(p)e~~~~~~dp) (th(p)e Yh(P)dp)

for x � y.

The invariance principle immediately gives

Theorem 5.5: let m(x) be an absolute ly continuous function on

with m(0 ) < a ’. Let m ’(x) be bounded on every finite interval and let the

function on D(0 , a ’]

• y ( ’) —
~~ S m ’~~~~~

be almost everywhere continuous with respect to the Gaussian process

(c2(x), x ~ 0) defined in Theorem 5.Ii. . Let

n
(5.12 ) = ~~m(nD~)/n. -

P Then the distribution of

(5.13) ~/~i (T - f m ’(x)(i_ F~2 (x)) cIx + m( O)]

where F~2(x) is defined in (5.10 ),  converges weakly to the normal dis-

tribution with mean zero and variance

a’ a’ -

- - 
(s.~~) S .1 1c4(x,y)m’(x)m’(y)dxdy

~

— 0 0

where K~1 (x,y) is as defined in (5.11).

This theorem covers a very wide range of statistics based symmetrica.U.y

on modified spacings.

- —.-— -.- - - •.--— -•—-— - -•——--- - -- ,- 
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6. Asymptotic relative efficiences of tests based on moi ifleci spac ings.

The Pitman asymptotic relative efficiency (ARE) of a test relative to

another test is defined as the limit of the inverse ratio of sample sizes

required to obtain the same limiting power at a sequence of alternatives

converging to the null hypothesis. This limiting power should be a value

in between the limiting size, ~ and the maximum power 1, in order that

it can give an insight into the power behaviour of the test. If the limiting

power of a test at a sequence of alternatives is ~, then its ARE with

respect to any other test whose limiting power (with same size) is greater

than u, is zero. On the other hand, if the limiting power of a test at

a sequence of alternatives converges to a number in the interval (r, 1),

then a measure of the rate of this convergence, called ‘efficacy’ can be

computed. Under certain standard regularity assumptions (see , e.g. , Fraser

(1957)) which include a condition about the nature of alternatives, asymptotic

normal distribution of the test statistic under these alternatives, etc.,

this ‘efficacy ’ is given by

(6.1) efficacy =

Here anc~ ~
2 are the mean and variance of’ the limiting normal dis-

tribution under the sequence of alternatives when .the test-statistic has

been nornialised to have a limiting normal distribution with mean zero and

finite variance under the hypothesis. In such a situation, the ARE of’ one

test with respect to another is simply the ratio of their efficacies.

Using Theorem 5.5, we can now compute the ARE’s of test s which are

syninetric in modified spacings. We defined {D~ = nD1/h~1, i =

as the modified spacings where the factors (hni ) satisfy the condition

- 

- 

~~~ - 

~~~~~~~~~~~~~~~~~~ -1 - - -
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(6.2) sup.1 Ihni 
- h(i/n) l = o(1).

i

If m be any function on (0, a’) satisfying the conditi ons of Theorem 5.5

we define a symmetric statistic based on the modified spacings

n
— (6.3) = ~~ m(D*

i)/n
1=1

The mean under the hypothesis of this is, say

(6.14)

and under the alternatives (2.1) say

if ~~> l/2 -

= + A(m, L, h)/n~, say if 1/14 <~~ � 1/2

(6.5) = + A(m , L, h)/n h
~~ + B(m, L, h)/n

l
~
’2, say if ~ = 1,/14.

k where

A(m, L, h) = - 5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

B(m, L, Ii) = 

~~~ 

J’ m ’(x) e~~~~~~txL(p)L ’(p)h(p)

(6.6) + (x2/2)~~ (p)h2 (p)]dx dp.

If A(m, L, Ii) ~ 0, then the sequence of tests based on can distinguish

alternatives of the form (2.1) at a distan ce of order n
_1

~2 from the

hypothesis. This shows that such tests have a better performance than tests

considered earlier which are symnetric in the normalised spacings. However

there is no surety that A(m, L, h) ~ 0 for all L. Consider the following

example. let

L --~~~~~~~~
- 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~. ~~~~~~~~~~~~~~~~~~ ~~~~~~~
-J

~I~~~



r _ .  
— - — — - — — -

~
—— • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ___________ —~~
- -- -~ —-- -

I 25

hni = n/(n _ i+1)

- 
11(p) = l/CL-p), 0 ~ p <1

D~~= ( n _ i + 1) D ~

(6.7) m(x) = x.

Then
n

* ~~
- 

*T =

1

=

(6.8) 
. 

= )~Xj/n + 1/n.

A simple computation shows

1
F (6.9) A(m, L, h) = ,J’ pL (p)dp

0

which is n~ times the excess of the mean under the alternati ve over that
*under the hypothesis and is zero for alternat ives under which has a

mean 1/2 . But if this excess is non-zero , the test based on ~ m(-nD~)/n

has a better performanc e than symmetri c nonna.Used spacings statistics con-

sidered in Theorem 5.3. However if A(m, L,.h) = 0, this test statistic

discriminates such alternatives , if at all, only when they are at a distance of

n - ~~, which puts this on par with the symmetric spacings tests.

Thxt~ it should be remar ked that one can always construct tests based

symmetrically on modified spacings which have the abili ty to detect alter-

natives at a distance of n ~ . This is because In testing the hypothesis

- - 
• of uniformity against the fixed sequence of alternatives G~(x) — x + L(x)/n 4 , -

• —  — — I ~
~~~~~ __ __

~~~ _ S _ ~~ — — ~~~~~~ 
~~~~~~~~~~~~~ 

— ‘ — ~~~~~~~~~~~~~~ ..~~~
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- 
~~~- the test statistic

n

(6. l.o) = 5’ 2 (i/n÷1)D~
i=l

1
with h(p ) = 1/2(p) and m(x) = x, has A (m,L,h) = .1 22 (p)dp ~ 0. Some

0
recent investigations by Holst and Rao (1978) indicate that tests of the form

(6.io) Drovide the locally moat powerful spacings tests for unifor mity against

the fixed sequence of alternatives

~~~~ ~~~~~~~~~~ 
_ _ _ _ _ _ _ _ _  
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